

Ein- und Mehrkernkomplexe des 9,10-Dihydro-9,10-dimethyl-9,10-diboraanthracens ¹

Peter Müller, Hans Pritzkow, Walter Siebert *

Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
Eingegangen den 15 Januar 1996

Abstract

A series of new transitionmetal complexes of 9,10-dihydro-9,10-dimethyl-9,10-diboraanthracene (1) was synthesized and characterized. Mono-, di-, and trinuclear species were isolated, indicating the diversity of the ligand properties of 1. The reaction of 1 with an excess of $[CoCp(C_2H_4)_2]$ yields the known 18 VE sandwich complex $[(CoCp)_1]$ (2) and the new paramagnetic 32 VE triple-decker complex $[(CoCp)_2]$ (3). $[RhCp(C_2H_4)_2]$ forms with 1 the 18 VE sandwich complex $[(RhCp)_1]$ (4). Two equivalents of $[FeCp(C_8H_{12})]$ and 1 yield the diamagnetic 30 VE triple-decker $[(FeCp)_2]$ (5) with the iron atoms η^6 bifacially coordinated to the heterocycle. The dianion 1^2 reacts with $[CoCp^+Br]_2$ to form $[(CoCp^+)_3]$ (6) with three independent 18 VE metal centres. The reactions of 1^2 with $[Ni(C_3H_5)Br]_2$ and $[Ni(C_4H_7)Br]_2$ lead to the 30 VE triple-decker complexes $[Ni(C_3H_5)_2]$ (7a) and $[Ni(C_4H_7)_2]$ (7b) respectively. $[Pd(C_8H_{12})_2]$ and $[Pt(C_8H_{12})_2]$ yield in the reaction with 1 the 18 VE complexes $[Pd(C_8H_{12})_1]$ (8) and $[Pt(C_8H_{12})_1]$ (9) respectively. The complex $[Ni((C_6H_5)_2PCH_2)_2]$ (10) is generated by reacting 1^2 with $[Ni((C_6H_5)_2PCH_2)_2]$. Two equivalents of the radical anion 1^- and Ni^{2+} form the labile 18 VE sandwich $[Ni(1)_2]$ (11). The constitutions of the new complexes have been derived from spectroscopic data and elemental analyses, and were confirmed by X-ray structure analyses for 5, 6, 7a, 8, 9, and 10.

Zusammenfassung

Eine Reihe neuer Übergangsmetall-Komplexe des 9,10-Dihydro-9,10-dimethyl-9,10-diboraanthracens (1) wurden synthetisiert und charakterisiert. Es gelang die Isolierung von Ein-, Zwei- und Dreikernverbindungen, die die Vielfalt der Ligandeigenschaften von 1 dokumentieren. Die Umsetzung von 1 mit einem Überschuß an $[CoCp(C_2H_4)_2]$ führt zu dem bekannten 18 VE Sandwichkomplex $[(CoCp)_1]$ (2) und zu der neuen paramagnetischen 32 VE Tripeldeckerverbindung $[(CoCp)_2]$ (3). Die Umsetzung von $[RhCp(C_2H_4)_2]$ mit 1 ergibt den 18 VE Sandwichkomplex $[(RhCp)_1]$ (4). Zwei Äquivalente $[FeCp(C_8H_{12})]$ und 1 bilden den diamagnetischen 30 VE Tripeldecker $[(FeCp)_2]$ (5), in dem die Eisenatome bifacial η^6 an den Borheterocyclus koordiniert and. Das Dianion 1^2 reagiert mit $[CoCp^*Br]_2$ zu dem Dreikernkomplex $[(CoCp^*)_3]$ (6) mit drei unabhängigen 18 VE Metallzentren. Die Umsetzungen von 1^2 mit $[Ni(C_3H_5)Br]_2$ bzw. $[Ni(C_4H_7)Br]_2$ führen zur Bildung der diamagnetischen 30 VE Tripeldeckerkomplexe $[\{Ni(C_3H_5)\}_2]$ (7a) bzw. $[\{Ni(C_4H_7)\}_2]$ (7b). $[Pd(C_8H_{12})_2]$ und $[Pt(C_8H_{12})_2]$ ergeben mit 1 die diamagnetischen 18 VE Einkernkomplexe $[Pd(C_8H_{12})_1]$ (8) bzw. $[Pt(C_8H_{12})_1]$ (9). Die 18 VE Verbindung $[Ni((C_6H_5)_2PCH_2)_2]$ (10) entsteht aus 1^2 und $[Ni((C_6H_5)_2PCH_2)_2]$. Das Radikalanion 1^2 reagiert mit Ni^2 zur labilen 18 VE Sandwichverbindung $[Ni(1)_2]$ (11). Die Konstitution der Verbindungen wurden aus den spektroskopischen Daten und Elementaranalysen abgeleitet und für 5, 6, 7a, 8, 9 und 10 durch Kristallstrukturanalysen bestätigt.

Keywords: 9,10-Diboraanthracene; Sandwich complexes; Triple-decker complexes; Crystal structures

1. Einleitung

9,10-Dihydro-9,10-dimethyl-9,10-diboraanthracen (1) zeigt bei der Komplexierung mit verschiedenen Metall-komplexfragmenten gute Ligandeigenschaften [1,2]. Dabei fungiert das 1,4-Diboracyclohexa-1,5-dien als

Corresponding author.

Herrn Prof. Dr. R.N. Grimes zum 60. Geburtstag gewidmet.

Vierelektronendonor und als Zweielektronenakzeptor. Bisher konnten Übergangsmetallkomplexfragmente nur facial an den Borheterocyclus von 1 und an die Benzoringe gebunden werden. Dagegen gelang bei 1,4-Dihydro-1.4-dimethyl-1.4-diboranaphthalinen die Synthese von Tripel- und Tetradeckerkomplexen [3,4]. Tripeldeckerkomplexe mit bifacialer n⁶-Komplexierung des Borheterocyclus von 1 waren bisher nicht bekannt. Versuche, den Komplex 2 mit [Cr(CO)₃(NCMe)₃] zum 30 VE Tripeldecker [Cr(CO), 2] aufzustocken, führten überraschend zum 34 VE Zweikernkomplex mit dem CoCp-Komplexfragment n⁶ an dem Borheterocylus und dem Cr(CO)₃-Komplexfragement η^6 an einen Benzoring gebunden [1]. Wir berichten hier über Ein- und Mehrkemkomplexe, die durch Umsetzung von 1 mit reaktiven Komplexen sowie durch Reaktion von 1² mit kationischen Übergangsmetallkomplexen entstehen.

2. Ergebnisse und Diskussion

2.1. Darstellung und Eigenschaften

Bei der Umsetzung von 1 mit einem großen Überschuß an $[CoCp(C_2H_4)_2]$ wird neben dem 18 VE Sandwichkomplex 2 [1] der Zweikernkomplex $[(CoCp)_21]$ (3) erhalten. Da das Produkt paramagnetisch ist, müssen beide CoCp-Fragmente bifacial am Heterocyclus unter Bildung des 32 VE Tripeldeckerkomplexes 3 koordiniert sein. Die Bildung des isomeren Zweikernkomplexes, in dem ein CoCp-Fragment am Dien eines Benzorings gebunden ist, wird nicht beobachtet. Bei der Lagerung von 3 tritt selbst bei -78° C langsam Zersetzung zu 2 auf. Die analoge Umsetzung von 1 mit $[RhCp(C_2H_4)_2]$ führt auch bei einem Überschuß der RhCp-Komponente nur zur Sandwichverbindung 4, die sich nicht zum paramagnetischen Tripeldecker [RhCp4] aufstocken läßt.

Setzt man dagegen 1 mit $[FeCp(C_8H_{12})]$ im Verhältnis 1:2 um, dann entsteht in guter Ausbeute der

diamagnetische Tripeldecker 5. Seine Konstitution folgt aus dem NMR- und Massenspektrum, sie wird durch eine Kristallstrukturanalyse bestätigt. Es handelt sich um eine 30 VE Verbindung mit einer geschlossenen Elektronenschale [5], die ebenso wie die entsprechenden 1,4-Diboranaphthalin- und 1,4-Diboracyclohexadien-Komplexe eine gute thermische Stabilität aufweist.

Im Gegensatz zur Bildung von 3 entsteht durch Umsetzung von 1^{2-} [6] mit $[CoCp^*Br]_2$ überraschenderweise der Dreikernkomplex $[(CoCp^*)_31]$ (6), dessen spektroskopische Daten auf drei unabhängige 18 VEZentren hinweisen. In 6 ist analog dem Dreikernkomplex $[\{Fe(CO)_3\}_31]$ [2] ein Metallkomplexfragment η^6 an den Borheterocyclus gebunden, die beiden anderen $CoCp^*$ -Fragmente komplexieren jeweils antarafacial die Diene der beiden Benzoringe.

Die Umsetzung von 1^2 mit dimerem Allylnickelchlorid bzw. 2-Methallyl-nickelchlorid führt zu den Bis(η^3 -allyl-nickel)- bzw. Bis(η^3 -methallyl-nickel)-Tripeldeckerverbindungen 7a bzw. 7b. Hier sind jeweils zwei Metallkomplexfragmente bifacial η^6 an das Diboracyclohexadien von 1 gebunden. Wie bei anderen Allyl-Nickel-Tripeldeckerkomplexen [7] zeigt das H-NMR-Spektrum von 7a eine Kopplung des am mittleren Kohlenstoffatom gebundenen Wasserstoffatoms mit jeweils zwei endo- bzw. exo-orientierten H-Atomen der endständigen Allyl-Kohlenstoffatome. Eine Unterscheidung der endo- und exo- Protonen ist nicht möglich, die Kopplungskonstanten betragen $^3J(H,H) = 12.2$ und $^3J(H,H) = 6.5$ Hz. Beide Verbindungen konnten durch Kristallstrukturanalysen abgesichert werden (s. unten).

Analog zur Bildung der Sandwichverbindung [Ni(C₈H₁₂)1] [1] führt die Reaktion mit [Pd(C₈H₁₂)₂] und [Pt(C₈H₁₂)₂] zu den Komplexen 8 und 9. [Pd(C₈H₁₂)₂] wurde in situ durch Reduktion von [Pd(C₈H₁₂)Cl₂] mit Cobaltocen in Anwesenheit von 1.5-cis, cis-Cyclooctadien erzeugt [8]. Die Konstitution der Komplexe 8 und 9 konnte ebenfalls durch Kristallstrukturanalysen abgesichert werden. Der diamagnetische 18 VE Komplex 10 wird durch Umsetzung von 1²⁻ mit Bis-1,2-(diphenylphosphan)ethan-nickeldichlorid als gelbes, luftstabiles Produkt erhalten. Im H-NMR-Spektrum ist das Signal für die Bormethylgruppen durch eine ⁴J-Kopplung mit den beiden Phosphoratomen des Liganden am Nickel zu einem Triplett

aufgespalten und stellt den A_3 -Teil zweier A_3XX' -Spinsysteme dar. Da die Kopplungskonstanten zu beiden Phosphoratomen gleich sind, ergibt sich ein Pseudotriplett mit einer Kopplungskonstanten von ${}^4J(P,H) = 4.4$ Hz. Dies ist durch Einstrahlexperimente abgesichert. Aus den spektroskopischen Daten folgt, daß das Nickelatom η^6 an den Borheterocyclus gebunden ist, was durch eine Kristallstrukturanalyse bestätigt wird.

Die Umsetzung von 1^- , erhalten durch Reduktion von 1 mit Kalium in THF in Gegenwart von 18-Krone-6 [6], mit NiBr₂ führt in geringer Ausbeute zu dem labilen Sandwichkomplex 11, der selbst bei -78° C langsam zerfällt. Die 1 H und 11 B-NMR-spektroskopischen Daten belegen die Sandwichstruktur, es sind zwei Diboraanthracen-Einheiten η^6 am Borheterocyclus um ein Nickelzentrum koordiniert. Die geringe Stabilität von 11 im Vergleich zu Bis(1,4-diboracyclohexadien)-nickel-Komplexen hängt mit den ungünstigen Donor-Akzeptor-Verhältnissen des Liganden gegenüber d 10 -Nickel zusammen, da bei der Bildung von 11 vier Benzoringe erheblich in ihrem aromatischen Charakter gestört werden.

3. Strukturen von 5, 6, 7a, 8, 9 und 10

Der Heterocyclus ist in allen Komplexen η⁶ an das Metaliatom koordiniert. Dabei tritt gegenüber dem freien Liganden eine Aufweitung der C-C Abstände und eine Verkürzung der B-C Abstände ein [6]. Es spielt hierbei keine Rolle, ob der Heterocyclus (wie im Falle von 6, 8, 9 und 10) mono- oder bifacial (5 und 7a) koordiniert ist. Die nicht koordinierten C-Atome der Benzoringe bilden ein Diensystem. In 6 ist jeweils ein CoCp*-Fragment an die beiden Diensysteme koordiniert. Wie im Falle der Bis-(tricarbonyleisen)- und Tris-(tricarbonyleisen)-Komplexe [2] führt dies zu einer Abwinkelung der Dieneinheit und zu einer Angleichung der C-C Abstände. Bei der monofacialen Koordination des Heterocyclus treten kleine Abweichungen von der Planarität auf. In den Fe- und Co-Komplexen zeigen die Boratome vom Metallatom weg, während sie in den C₈H₁₂-Komplexen mit Ni [1], Pd (8) und Pt (9) zum Metall hin abgeknickt sind. Dies läßt sich auch beim Vergleich der M-C und M-B Abstände erkennen (sofern nicht andere Effekte dies überlagern). Im Falle des Ni-Komplexes ist diese Abwinkelung relativ gering, für 8 und 9 deutlicher.

4. Folgerungen

Mit dem tricyclischen 12π-Elektronen-Liganden 1 lassen sich verschiedene Komplextypen aufbauen, die sich in der Zahl und der Anordnung der Metallzentren und in den Bindungsverhältnissen unterscheiden. Beispiele für η^6 -Komplexierung des Borheterocyclus an ein 14 VE Komplexfragment sind die diamagnetischen Komplexe 2 und 8–11 sowie [Fe(CO),1][2], [Ru(CO),1] [1], $[Fe(C_7H_8)1]$ [1] und $[Ni(C_8H_{12})1]$ [1]. Mit dem 12 VE Komplexfragment Cr(CO)₃ entsteht der 18 VE Komplex [Cr(CO)₃1], in dem ein Benzoring η^6 gebunden ist. Paramagnetische Einkernkomplexe mit 17 oder 19 VE werden nicht erhalten, weil 1 mit 13 VE Komplexfragmenten wie FeCp und Ni(allyl) zu den 30 VE Tripeldeckerkomplexen 5 und 7 reagiert. Es gelingt auch die Aufstockung des Sandwichkomplexes 2 zum 32 VE Tripeldecker 3, seine geringe Stabilität deutet auf die ungünstige elektronische Triplettstruktur hin. Von den diamagnetischen Zweikernkomplexen [{Fe(CO)₃}₃,1] [2] und $[Co(C_5H_5)Cr(CO)_3(\mu_2,\eta^6,\eta^6-1)]$ (34 VE) [1] weist letzterer eine 'slipped' Tripeldeckerstruktur auf. Den fünften Komplextyp von 1 stellen die Dreikernkomplexe 6 und [{Fe(CO)₃}₃1] [2] dar, in denen jeweils drei unabbhängige 18 VE Metallzentren vorliegen.

5. Experimenteller Teil

Alle Versuche wurden unter nachgereinigtem Argon und mit absolutierten, stickstoffgesättigten Lösungsmitteln durchgeführt. Die NMR-Spektren wurden auf den Geräten Bruker AC-200 (¹H: 200.13 MHz, ¹³C: 50.32 MHz, ³¹P: 81.01 MHz), Bruker AC-300 (¹H: 300.13 MHz, ¹³C: 75.47 MHz) und Jeol FX-90 (¹¹B: 28.75 MHz) in C₆D₆ als Lösungsmittel, die Massenspektren wurden auf einem Varian MAT CH7 und auf einem Finnigan MAT 8230 aufgenommen. Die Elementaranalysen wurden am Organisch-Chemischen Institut der Universität Heidelberg durchgeführt. Das verwendete Al₂O₃ wurde getrocknet und mit 5% Wasser desaktiviert.

5.1. μ, η^6, η^6 -9,10-Dihydro-9,10-dimethyl-9,10-diboraanthracen-bisl $(\eta^5$ -cyclopentadienyl)cobalt] (3)

205 mg (1.01 mmol) 1 werden in 60 ml Toluol mit 1.2 g (6.66 mmol) [CoCp(C₂H₄)₂] umgesetzt und das Fortschreiten der Reaktion wird an der Entwicklung von Ethen beobachtet. Man rührt 6 h bei R.T. und erwärmt 10 min auf 70°C. Danach wird das Lösungsmittel i.

Vak. entfernt und der Rückstand an Al_2O_3 -Toluol chromatographiert. Man erhält eine rotbraune Fraktion von 2 (142 mg, 43%) und eine grüne Fraktion des Tripeldeckers 3, Fp.: 80°C (Zers.), (55 mg, 12%). MS-El: m/z (%) = 452 (M⁺, 5,6), 328 (M⁺ - CoCp, 100), 263 (M⁺ - CoCp₂, 1,6), 189 (Cp₂Co⁺, 14,5). Gef.: C, 63.61; H, 5.84. $C_{24}H_{24}B_2Co_2$ (451.9). Ber.: C, 63.78 H, 5.35%.

5.2. η^6 -9,10-Dihydro-9,10-dimethyl-9,10-dibora-anthracen(η^5 -cyclopentadienyl)rhodium (4)

246 mg (1.21 mmol) 1 und 270 mg (1.21 mmol) [RhCp(C₂H₄)₂] werden in 30 ml Toluol 1 h auf 70 °C erwärmt. Danach wird das Toluol im HV entfernt und der schwarze Rückstand an Al₂O₃-Toluol chromatographiert. Nach Einengen des tiefgrünen Eluats und Abkühlen der Lösung auf 4°C erhält man 324 mg (72%) 4 als nadelförmige, tiefgrüne Kristalle, Fp: 219 °C. ¹H-NMR: δ = 8.18 (m, 4H, H_{ar}), 7.18 (m, 4H, H_{Ar}), 3.65 (s, 5H, C₅H₅), 1.77 (s, 6H, CH₃), ¹³C-NMR: δ = 135.75 (C_{Ar}), 127.5 (C_{Ar}), 107 (br., B-C_{Ar}), 84.2 (C₅H₅), -1 (br., CH₃), ¹¹B-NMR: δ = 22. MS-EI: m/z (%) = 372 (M⁺, 100), 168 (RhCp⁺, 34.7). Gef.: C, 61.45; H, 5.31. C₁₉H₁₀B₂Rh (371.9). Ber.: C, 61.37; H, 5.15%.

5.3. μ, η^6, η^6 -9,10-Dihydro-9,10-dimethyl-9,10-diboraanthracen-bis[$(\eta^5$ -cyclopentadienyl)eisen] (5)

283 mg (1.39 mmol) 1 und 636 mg (2.78 mmol) [FeCp(C_8H_{12})] werden in 50 ml Toluol 1 h am Rückfluß erhitzt. Danach wird das Toluol im HV entfernt und der schwarze Rückstand an Al_2O_3 -Toluol chromatographiert. 5 wird als grüne Bande eluiert und nach Einengen kristallisiert, Fp: 140°C (Zers.), Ausbeute 396 mg (64%). H-NMR: δ = 8.48 (m, 4H, H_{Ar}), 6.87 (m, 4H, H_{Ar}), 2.57 (s, 10H, C_5H_5), 1.29 (s, 6H, CH₃). CNMR: δ = 139.79 (C_{Ar}), 129.86 (C_{Ar}), 64.68 (C_5H_5), CB: n.b. B-NMR: δ = 1. MS-EI: m/z (%) = 446(M⁺, 97.6), 325 (M⁺ - FeCp, 100), 260 (M⁺ - FeCp₂, 12.5). Gef.: C, 64.65; H. 5.38. $C_{24}H_{24}B_2Fe_2$ (445.7). Ber.: C, 64.67; H, 5.43%.

5.4. $\mu, \eta^{\delta}, \eta^{4}, \eta^{4}$ -9,10-Dihydro-9,10-dimethyl-9,10-diboraanthracen-tris[$(\eta^{\delta}$ -pentamethylcyclopentadienyl)-cobalt[(6)

243 mg (1.19 mmol) 1 werden mit einem Kaliumspiegel zum Dianion 1^{2-} reduziert und auf eine gefrorene Lösung von 974 mg (1.78 mmol) $[\text{Co}(C_5(\text{CH}_3)_5)\text{Br}]_2$ in 25 ml THF filtriert. Man läßt langsam auf 20°C erwärmen und rührt noch 1.5 h. Das Lösungsmittel wird i. Vak. entfernt und der schwarze Rückstand an Al_2O_3 -Toluol chromatographiert. Nach Einengen des schwarzen Eluats kristallisiert 6, Fp: 243°C (Zers.), Ausbeute: 295 mg (45%), $^1\text{H-NMR}$:

δ = 5.89 (m, 4H, H_{Ar}), 2.35 (m, 4H, H_{Ar}), 1.69 (s, 30H, CH₃C₅), 1.37 (s, 15H, CH₃C₅), 1.34 (s, 6H, BCH₃). ¹³C-NMR: δ = 129.8 (C_{Ar}), 126.3 (C_{Ar}), 112 (B-C_{Ar}), 89.1 (CC₅), 87.9 (CC₅), 10.13 (CH₃C₅), 9.75 (CH₃C₅), -2.9 (BCH₃,). ¹¹B-NMR: δ = 24. MS-EI: m/z (%) = 786 (M⁺, 45), 592 (M⁺ - CoCp^{*}, 30), 398 (M⁺ - 2(CoCp^{*}), 22). Gef.: C, 68.32; H, 7.18. C₄₄H₅₉B₂Co₃ (786.4). Ber.: C, 67.21; II, 7.56%.

5.5. $\mu, \eta^6, \eta^6-9, 10$ -Dihydro-9, 10-dimethyl-9, 10-diboraanthracen-bis[$(\eta^3$ -allyl)nickel] (7a)

220 mg (1.07 mmol) 1 werden wie in 5.4 beschrieben zum Dianion reduziert und auf eine gefrorene Lösung von 386 mg (1 mmol) $[Ni(C_3H_5)Br]_2$ in 25 ml THF filtriert. Man läßt langsam auf 20°C erwärmen und rührt noch 1.5 h. Das Lösungsmittel wird i. Vak. entfernt und der schwarze Rückstand an Al_2O_3 -Toluol chromatographiert. Aus dem braunen Eluat kristallisiert 7a nach Einengen aus, Fp: 195°C, Ausbeute: 213 mg (53%). H-NMR: $\delta = 8.19$ (m, 4H, H_{Ar}), 7.13 (m, 4H, H_{Ar}), 4.06 (m, 1H, CH_{Aiiyl}), 2.22 (d, 4H, CH_{2Ailyl}), 1.12 (s, 6H, CH_3), 0.79 (d, 4H, CH_{2Ailyl}). C-NMR: $\delta = 133.8$ (C_{Ar}), 124.5 (C_{Ar}), 110 (B- C_{Ar}), 99.9 (CH_{2Ailyl}), 50.0 (CH_{Ailyl}), -0.8 (br., BCH₃). B-NMR: $\delta = 7$. MS-EI: m/z (%) = 402 (M⁺, 88), 360 (M⁺ - C_3H_6 , 100). Gef.: C, 59.34; H, 6.27. $C_{20}H_{24}B_2Ni_2$ (403.5). Ber.: C, 59.54; H, 6.00%.

5.6. μ, η^6, η^6 -9,10-Dihydro-9,10-dimethyl-9,10-diboraanthracen-bis $\{(\eta^3$ -methallyl)nickel $\}$ (7b)

Die Darstellung erfolgt analog **7a**. Aus 190 mg (0.93 mmol) **1** und 359 mg (0.93 mmol) [Ni(C_4H_7)Br]₂ erhält

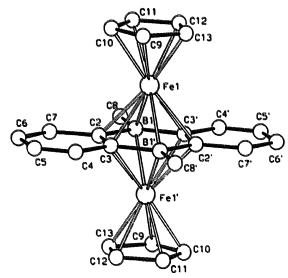


Abb. 1. Molekülstruktur von 5. Ausgewählte Abstände (Å) und Winkel (°): Fe1-B 2.192, 2.203(5); Fe1-C 2.147-2.172(5); B1-C2(3') 1.524, 1.527(8); C2-C3 1.885(8); C2-B1-C3' 115.7(4); B1-C2-C3 122.0(4); C2-C3-B1' 122.3(4).

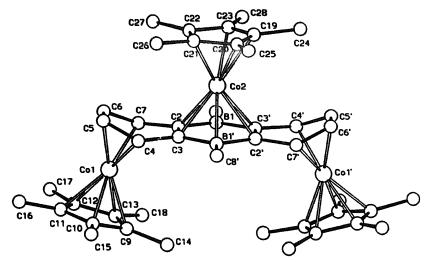


Abb. 2. Molekülstruktur von 6. Ausgewählte Abstände (Å) und Winkel (°): Co1-C4(7) 2.075, 2.078(3); Co1-C5(6) 1.977, 1.970(3); Co2-B1 2.239(3); Co2-C2(3) 2.191, 2.185(3); B1-C2(3') 1.529, 1.521(5); C2-C3 1.425(4); C2-B1-C3' 115.3(3); B1-C2-C3 122.3(3); C2-C3-B1' 122.4(3).

man durch Chromatographieren an Al $_2$ O $_3$ -Toluol **7b** als braunes Produkt, Fp: 215 °C, 173 mg (43%). ¹H-NMR: δ = 8.17 (m, 4H, H $_{Ar}$), 7.10 (m, 4H, H $_{Ar}$), 2.08 (s, 4H, CH $_{2Allyl}$), 1.15 (s, 6H, BCH $_3$), 0.97 (s, 6H, CH $_{3Allyl}$), 0.8 (s, 4H, CH $_{2Allyl}$); ¹³C-NMR: δ = 150.5 (C $_{Ar}$), 124.2 (C $_{Ar}$), 113.7 (CH $_{2Allyl}$), 110 (br., BC $_{Ar}$), 50.0 (C $_{Allyl}$), 20.7 (CH $_{3Allyl}$), -0.5 (br., BCH $_3$). ¹¹B-NMR: δ = 4; MS-EI: m/ (%) = 430 (M $^+$, 76), 374 (M $^+$ - C $_4$ H $_8$, 100). Gef.: C, 61.50; H, 6.56. C $_{22}$ H $_{28}$ B $_2$ Ni $_2$ (431.5). Ber.: C, 61.24; H, 6.54%.

5.7. η^{a} -9.10-Dihydro-9.10-dimethyl-9.10-dibora-anthracen-(1,5-cyclooctadien)palladium (8)

Zu einer Lösung von 183 mg (0.90 mmol) 1 und 514 mg (0.9 mmol) [Pd(C_8H_{12})Cl₂] in 20 ml CH₂Cl₂ und 7 ml C_8H_{12} werden bei R.T. 340 mg (1.80 mmol) [CoCp₂] in 30 ml CH₂Cl₂ innerhalb von 2 h getropft. Nach 30 min Rühren werden die flüchtigen Bestandteile im HV entfernt. Der schwarze Rückstand wird an Al₂O₃-Toluol chromatographiert, das entstandene [CoCp₂Cl] bleibt als schmutzig-orangefarbener Feststoff auf dem Säulenmaterial. Aus dem gelben Eluat werden durch Einengen 197 mg (52%) 8, Fp: 160 °C (Zers.), erhalten. ¹H-NMR: δ = 8.11 (m, 4H, H_{Ar}), 7.40 (m, 4H, H_{Ar}), 1.18 (s, 6H, CH₃), 4.4 (br., 4H, CH_{cod}), 1.06 (m, 4H, CH_{2cod}), 1.43 (m, 4H, CH_{2cod}); ¹³C-NMR: δ = 132.41 (C_{Ar}), 128.64 (C_{Ar}), 131 (br., BC_{Ar}), 0 (br., BCH₃), 101.07 (CH_{cod}), 29.25 (CH_{2cod}); ¹¹B-NMR: δ = 29; MS-EI: m/z (%) = 417 (M⁺, 19.3), 310 (M⁺ - cod, 8.5). Gef.: C, 59.75 ²; H, 6.72. $C_{22}H_{26}B_2$ Pd (418.5). Ber.: C, 63.14; H, 6.26%.

5.8. η^6 -9,10-Dihydro-9,10-dimethyl-9,10-dibora-anthracen-(1,5-cyclooctadien)platin (9)

190 mg (0.93 mmol) **9** und 300 mg (0.93 mmol) [Pt(C_8H_{12})₂] werden in 30 ml Toluol bei R.T. 4 h gerührt, wobei die Reaktionsmischung langsam gelb wird. Danach werden alle flüchtigen Bestandteile im HV entfernt und der dunkelgelbe Rückstand wird an Al₂O₃-Toluol chromatographiert. Aus dem Eluat erhält man 370 mg (78%) blaßgelbes **9**, Fp: 210°C (Zers.), ¹H·NMR: $\delta = 8.06$ (m, 4H, H_{Ar}), 7.34 (m, 4H, H_{Ar}), 1,39 (s, 6H, CH₃, ³J(H,Pt) = 8.4 Hz), 4.0 (br., 4H, CH_{cod}, ²J(H,Pt) = 78.8 Hz), 1.00 (m, 4H, CH_{2cod}), 1,17

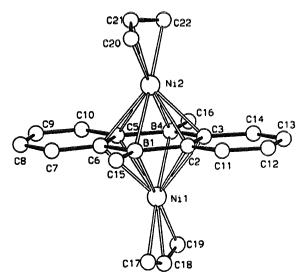


Abb. 3. Molekülstruktur von 7a. Ausgewählte Abstände (Å) und Winkel (°): Ni-B 2.215-2.256(6); Ni-C 2.163-2.273(5); B-C 1.549-1.561(8); C-C 1.445-1.460(7); C-B-C 116.9-117.2(4); B-C-C 120.8-122.1(4).

² Abweichung infolge Borcarbidbildung.

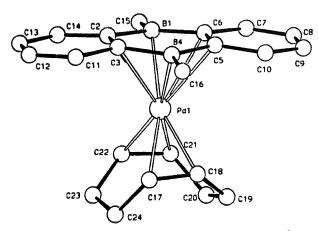


Abb. 4. Molekülstruktur von 8. Ausgewählte Abstände (Å) und Winkel (°): Pd-B 2.349-2.369(5); Pd-C 2.414-2.445(4); B-C 1.539-1.575(7); C-C 1.432-1.438(6); C-B-C 118.9-119.1(4); B-C-C 119.6-121.1(4). Ausgewählte Abstände (Å) und Winkel (°) von 9: Pt-B 2.334-2.351(8); Pt-C 2.392-2.430(7); B-C 1.531-1.568(11); C-C 1.419-1.444(10); C-B-C 117.8-118.8(7); B-C-C 120.2-121.3(7).

(m, 4H, CH_{2cod}). ¹³C-NMR: $\delta = 132.05$ (C_{Ar}), 127.93 (C_{Ar}), 124 (br., BC_{Ar}), -2.5 (br., BCH₃), 80.94 (CH_{cod}, ¹J(C,Pt) = 188.9 Hz), 30.54 (CH_{2cod}, ²J(C,Pt) = 11.5 Hz); ¹¹B-NMR: $\delta = 20$. MS-EI: m/z (%) = 507 (M⁺, 100), 399 (M⁺ = cod, 9.6), 383 (M⁺ = cod = Me, 22.4). Gef.: C, 51.90; H, 5.15. C₂₂H₂₆B₂Pt (507.2). Ber.: C, 52.10; H, 5.17%.

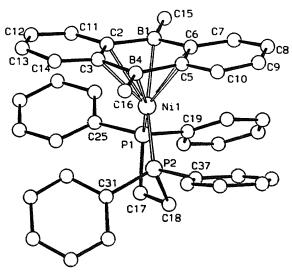


Abb. 5. Molekülstruktur von 10. Ausgewählte Abstände (Å) und Winkel (°): Ni-P 2.165, 2.168(2); Ni-B 2.240, 2.247(3); Ni-C 2.268-2.325(3); B-C 1.539-1.548(5); C-C 1.432, 1.442(4); C-B-C 117.8, 117.9(3); B-C-C 120.6-121.3(3).

5.9. η ⁶-9,10-Dihydro-9,10-dimethyl-9,10-diboraanthracen-[1,2-bis-(diphenylphosphano)ethan[nickel (10)

213 mg (1.04 mmol) 1 werden in 50 ml THF gelöst und 10 min bei 20°C mit einem Kaliumspiegel zu 1²⁻ reduziert. Das rote Dianion wird auf eine gefrorene

Tabelle 1 Einzelheiten zu den Kristallstrukturanalysen

	5	6	7 u	8	9	10
Formel	C24H24B2Fe2	C44H39B2CO1	C20H24B2Ni2	C22H26B2Pd	C22H26B2Pt	C ₄₀ H ₃₈ B ₃ NiP ₃
Molmasse	445.7	786.4	403.4	418.5	507.2	661.0
Kristallsystem	monoklin	monoklin	monoklin	monoklin	monoklin	monoklin
Raumgruppe	P2 ₁ /c	C2/c	$P2_1/n$	$P2_1/c$	$P2_1/c$	$P2_1/n$
u (Å)	8.392(5)	8.971(5)	15.230(8)	8.773(5)	8.734(5)	8.344(6)
b (Å)	15.655(10)	20.810(10)	15.922(8)	14.194(7)	14.098(7)	19.829(16)
c (Å)	8.603(6)	21.894(10)	16.926(9)	31.898(16)	31.878(16)	20.788(16)
β (°)	115.78(5)	100.68(3)	112.46(3)	95.36(4)	95,79(4)	92.87(6)
Zellvolumen (Ź)	1018	4017	3793	3955	3905	3435
Z	2	4	8	8	8	4
d (g cm ; ')	1.46	1.30	1.41	1.41	1.73	1.28
μ (cm · ¹)	14.3	12.5	19.8	9.4	71.9	6.9
Kristallgröße (mm)	$0.2 \times 0.4 \times 0.5$	$0.4 \times 0.5 \times 0.6$	$0.3 \times 0.3 \times 0.6$	$0.3 \times 0.5 \times 0.6$	$0.4 \times 0.4 \times 0.7$	$0.4 \times 0.4 \times 0.7$
Transmissionsber.	0.61 - 0.76	0.84-1.00	0.48-0.56	0.69~0.80	0.44-0.74	0.92-1.00
20max (°)	52	56	50	50	54	52
Reflexe						
hkl-Bereich	± 10, 19, 10	±11, 27, 28	± 18, 18, 20	± 10, 16, 37	±11, 18, 40	± 10, 23, 24
Gemessen	2002	4849	6629	6959	8082	6073
Beobachtet $(1 > 2\sigma_i)$	1613	3452	4339	5197	5835	4461
Zahl der Parameter	132	302	506	463	464	559
RI	0.049	0.046	0.047	0.039	0.039	0.038
wR2	0.141	0.137	0.117	0.093	0.089	0.105
Δp (e Å - ')	-0.5, 1.0	-0.4, 0.4	-0.5, 0.7	-0.4, 0.3	-1.0, 0.7	-0.3, 0.4

Lösung von 530 mg (1 mmol) [Ni{(C_6H_5)₂PCH₂}₂Cl₂] in 25 ml THF filtriert. Man läßt langsam unter Rühren auf 20°C erwärmen, danach werden die flüchtigen Bestandteile i. Vak. entfernt und der braunschwarze Rückstand an Al₂O₃-Toluol chromatographiert. Man erhält gelbes 10, Fp: 243°C, Ausbeute: 448 mg (68%). ¹H-NMR: δ = 7.76 (m, 4H, H_{Ar}), 7.33 (m, 4H, H_{Ar}), 7.12-6.95 (m, 20H, H_{Ph}), 1.16 (d, 4H, P-CH₂), 0.97 (t, 6H, CH₃), ¹³C-NMR: δ = 133.9 (C_{Ph}), 133.8 (C_{Ph}); 133.7 (C_{Ph}), 133.5 (C_{Ph}), 129.8 (C_{Ph}), 126.9 (C_{Ph}), 125 (BC_{Ar},), 31.6 (PCH₂), -0.4 (br., BCH₃); ¹¹B-NMR: δ = 21; ³¹P-NMR: δ = 54.4. MS-EI: m/z(%) = 660 (M⁺, 29), 456 (Ni(dppe)⁺, 44), 398 (dppe⁺, 40) 204 (1⁺, 100). Gef.: C, 72.87; H, 5.79; P, 9.52. C₄₀H₃₈B₂NiP₂ (661.0). Ber.: C, 72.68; H, 5.79; P, 9.37%.

5.10. Bis- $(\eta^6$ -9,10-dihydro-9,10-dimethyl-9,10-diboraanthracen)-nickel (11)

310 mg (1.52 mmol) 1 werden in 50 ml THF unter Zusatz von 529 mg (2.00 mmol) 18-Krone-6 mit einem Kaliumspiegel zum Monoanion 1^- reduziert. Die rote Lösung wird auf 235 mg (0.76 mmol) NiBr₂ · dme bei $-196\,^{\circ}$ C filtriert. Beim langsamen Auftauen färbt sich die Reaktionsmischung rasch schwarz. THF wird im HV entfernt und der schwarze Rückstand an Al₂O₃-Toluol chromatographiert. Rotes 11 wird eluiert. (5 mg, < 1%). 1 H-NMR: δ = 7,63 (m, 4H, H_{At}), 7,42 (m, 4H, H_{At}), 2,10 (s, 12H, CH₃), 11 B-NMR: δ = 35. MS-EI: m/z (%) = 466 (M⁺, 36.2), 262 (M⁺ – 1, 41.5), 204 (1⁺, 100).

6. Kristalistrukturanalysen von 5, 6, 7, 8, 9, und 10 (Abb. 1–5)

Tabelle I enthält Einzelheiten zu den Strukturbestimmungen. Die Intensitäten wurden mit einem Vierkreisdiffraktometer (Mo K α -Strahlung, ω -scan) gemessen. Eine empirische Absorptionskorrektur wurde durchgeführt. Die Strukturen wurden mit direkten Methoden gelöst [9] und mit allen gemessenen Reflexen mit der Kleinsten-Quadrate-Methode nach F^2 verfeinert (SHELXL93) [9]. Nichtwasserstoffatome wurden anisotrop verfeinert. Wasserstoffatome wurden in 5, 8 und 9 und zum Teil in 6 und 7a in berechneten Lagen oder als Teil

einer starren Gruppe (CH₃) eingegeben. Es wurden gruppenweise gemeinsame isotrope Temperaturfaktoren verfeinert. Alle 11-Atome in 10 und die H-Atome am Diboraanthracen in 6 und 7a wurden in Differenzfouriersynthesen lokalisiert und isotrop verfeinert. In 6 besitzt der Komplex eine kristallographisch bedingte zweizählige Achse durch den Mittelpunkt des Heterocyclus und durch das mittlere Cobaltatom. Der mittlere Pentamethylcyclopentadienylring ist fehlgeordnet, seine H-Atome wurden nicht eingegeben.

Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformations-zentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummern CSD 404833 (5), 404834 (6), 404831 (7a), 404832 (8), 404829 (9), 404830 (10) angefordert werden.

Dank

Wir danken der Deutschen Forschungsgemeinschaft (SFB 247), dem Fonds der Chemischen Industrie und der BASF-Aktiengesellschaft für die Förderung dieser Arbeit.

Literatur

- [1] P. Müller, B. Gangnus, H. Pritzkow, H. Schulz, M. Stephan und W. Siebert, J. Organomet. Chem., 487 (1995) 235.
- [2] H. Schulz, H. Pritzkow und W. Siebert, Chem. Ber., 124 (1991) 2203.
- [3] (a) K.F. Wörner und W. Siebert, Z. Naturforsch. Teil B. 44 (1989) 1221; (b) K.F. Wörner, J.-K. Uhm, H. Pritzkow und W. Siebert, Chem. Ber., 123 (1990) 1239.
- [4] H. Schulz, H. Pritzkow und W. Siebert, Chem. Ber., 125 (1992) 993.
- [5] J.W. Lauher, M. Elian, R.H. Summerville und R. Hoffmann. J. Am. Chem. Soc., 98 (1976) 3219.
- [6] P. Müller, S. Huck, H. Köppel, H. Pritzkow und W. Siebert, Z. Naturforsch. Teil B, 56 (1995) 1476.
- [7] (a) T. Kuhlmann, S. Roth, J. Roziere und W. Siebert, Angew. Chem., 98 (1986) 87; Angew. Chem. Int. Ed. Engl., 25 (1986) 105; (b) W. Siebert, Angew. Chem., 97 (1985) 924; Angew. Chem. Int. Ed. Engl., 24 (1985) 943; (c) W. Siebert, Pure Appl. Chem., 59 (1987) 947; (d) W. Siebert, Pure Appl. Chem., 60 (1988) 1345.
- [8] B. Hessner und G.E. Herberich, Z. Naturforsch. Teil B, 34 (1979) 638.
- [9] G.M. Sheldrick, SHELXS86, Universität Göttingen, 1986; SHELXL93, Universität Göttingen, 1993.